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Abstract. We vary the amplitude of the long-range Coulomb forces within a classical potential
describing a model silica glass and study the consequences on the structure and dynamics of the
glass, via molecular dynamics simulations. This model allows us to follow the variation of specific
features such as the first sharp diffraction peak and the boson peak in a system going continuously
from a fragile (no Coulomb forces) to a strong (with Coulomb forces) glass. In particular we show
that the characteristic features of a strong glass (existence of medium-range order, bell-shaped ring
size distribution, sharp boson peak) appear as soon as tetrahedral units are formed.

1. Introduction

The connection between the structure and the dynamics of a given system is of particular interest
in glasses since the structural entities at the origin of some specific vibrational features like the
boson peak (BP) are not yet well identified. For instance in silica, the archetype of network-
forming glasses, the existence of the BP has been connected alternatively to the presence of
SiO4 tetrahedra [1], ‘domains’ [2] or voids [3]. In molecular dynamics (MD) simulations
the most important ingredient is the force field used to mimic the interparticle interactions:
the aim is to reproduce as closely as possible the experimental vibrational data and then, by
looking at the atomic positions, to give an interpretation in terms of structure. In that sense the
so-called ‘BKS’ potential [4] has been widely used to describe silica and the results obtained
on the structure [5, 6], the dynamical [7] and the thermal properties [8] compare well with
experiments. This pairwise classical potential is the combination of a short-range term and the
long-range Coulomb interaction (CI) which is obviously the most important ingredient of the
force field [9]. One remarkable property of this potential is that CI forces alone are sufficient to
reproduce the tetrahedral covalent bonding network of the silica atoms without the addition of
extra terms such as angular terms. Our idea in this paper is to vary the amplitude of the CI (this
is not strictly equivalent to varying the range) in order to study the variation of the structure
and the dynamics of what can be seen as a toy silica glass. With this procedure we can study
the properties of a system going from a strong network glass (the silica glass described by the
usual BKS potential) to a fragile two-component soft-sphere glass when the CI is turned off.
The question we would like to address is: how do the structure and the dynamics change along
this path? The aim is to study the connection between structural features like the first sharp
diffraction peak (FSDP) or the existence of a tetrahedral network and the BP, this connection
being the topic of contradictory interpretations in the literature [3, 10, 11].
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2. Simulations

We performed molecular dynamics simulations for microcanonical systems containing 216
silicon and 432 oxygen atoms confined in a cubic box of edge length L = 21.48 Å, which
corresponds to a mass density of ≈2.18 g cm−3 very close to the experimental value of
amorphous silica (2.2 g cm−3). Periodic boundary conditions were used to limit surface
effects. The particles interact via the BKS potential whose standard functional form is, for two
particles i and j (which can be either Si or O),

U(rij ) = qiqj e
2

rij

+ Aij exp(−Bij rij ) − Cij

r6
ij

(1)

where rij is the interparticle distance, e the charge of an electron and the parameters Aij , Bij

and Cij are fixed as follows: ASiO = 18 003.7572 and AOO = 1388.773 eV; BSiO = 4.873 18
and BOO = 2.76 Å−1; CSiO = 133.5381 and COO = 175.0 eV Å6. The partial charges used to
compute the standard CI are given by qSi = 2.4 and qO = −1.2. This original form contains an
unphysical divergence at very short distances which we have corrected by adding a short-range
repulsive term (∼1/r40

ij ).
In order to vary the strength of the CI (which is calculated using the Ewald summation

method) we simply multiply the partial charges by a parameter λ which is fixed at the beginning
of each simulation:

qi −→ λqi. (2)

A simulation starts from a liquid configuration at 7000 K which is equilibrated during 50 000
time steps (35 ps). This system is then cooled to zero temperature at a quench rate of
2.3 × 1014 K s−1 which is obtained by removing the corresponding amount of energy from
the total energy of the system at each iteration. The aim here is not to obtain fine details of
the structure of real silica, which explains the use of a rather fast quenching rate compared
to the rates that can nowadays be achieved. In any case computer quenches are still far
away from those used in experiments. The quenched glass samples are finally relaxed in the
microcanonical ensemble during 100 000 time steps (70 ps) after which the temperature has
reached ≈2 K. We then average the structural information over the last 20 000 time steps to
avoid transient configurations and we diagonalize the dynamical matrix corresponding to the
final configuration to obtain the vibrational density of states.

This procedure has been repeated for eleven values of λ going from λ = 0.1 to λ = 1.1.
The ideal ‘λ = 0’ system would consist of a soft-sphere-like arrangement for the oxygen atoms
(similar to the systems we have studied earlier [12]) together with a random arrangement of the
silicon atoms in the interstices of the oxygen structure. Because of the weak attractive O–O
interaction present in the short-range part of the BKS potential, a small Coulomb interaction is
necessary in order to stabilize this system: we found that a value of λ around 0.065 is sufficient
which explains why we started our investigation at λ = 0.1. For this lowest λ-value we have
checked on the radial pair distribution functions as well as on other structural characteristics
that the structure was indeed very close to the ideal arrangement described above. On the
other hand, strong values of λ lead to an artificial local densification of the samples which are
non-homogeneous (holes start to form in the structure): for this reason the maximum value of
λ is limited to 1.1. Of course the standard BKS results are recovered for λ = 1.

3. Results and discussion

In order to examine the ‘quality’ of the tetrahedral network we first study the tetrahedral
O–Si–O angle θ which should be ideally equal to 109.47◦ in a perfect tetrahedron as well as
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the Si–O–Si angle φ which measures the relative position and orientation of two neighbouring
SiO4 tetrahedra. To numerically determine the bond angle O–Si–O (Si–O–Si), we determine
for each Si (O) atom the two nearest O (Si) atoms and we calculate the angle between the
two corresponding segments Si–O (O–Si), the result being averaged over all the Si (O) atoms.
The variation of θ and φ as a function of λ is plotted in figure 1. For λ � 0.5 it is obvious
that the SiO4 tetrahedra are not formed and that the network is not connected: the system
remains analogous to a soft-sphere glass up to a threshold value of about 0.6. This can also
be seen in the inset of figure 1 where the Si coordination number is plotted versus λ. This
quantity has been calculated by the integration of the Si–O radial pair distribution functions
up to a cut-off distance of 2.3 Å which corresponds to the first minimum for all the values of
λ. This coordination number is greater than 5.5 for λ = 0.1 and is close to 4 for λ ≈ 0.6–
0.7. Nevertheless for λ � 0.5 θ , the tetrahedral angle, θ , is almost constant and close to the
angle in a perfect tetrahedron (indicated by the hollow arrow) while the angle φ, between the
tetrahedra, is continuously increasing with λ. This indicates that the CI has a direct influence
on the medium-range order and once the tetrahedra (the building blocks) are created, they form
a connected network whose characteristics depend on the strength of the CI. In agreement with
a previous study [6] the mean Si–O–Si angle is close to 150◦ for λ = 1.0 (standard BKS
description) slightly larger than the experimental value of φ (144◦ [13] indicated by the filled
arrow). The calculated value closest to 144◦ corresponds to λ = 0.7 but this value is not
sufficient to recover other structural features of vitreous silica as we will see below; therefore
this is not an argument to modify the standard BKS charges.
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Figure 1. Variation of θ (O–Si–O angle: ◦ ) and φ (Si–O–Si angle: •) as functions of λ. The
hollow and filled arrows indicate the perfect tetrahedral value of θ and the experimental value of φ

respectively. In inset the Si coordination number is shown as a function of λ.

A second way to analyse the connectivity of the network is to monitor the distribution of
n-fold rings: an n-fold ring is defined as the shortest closed path of alternating Si–O bonds.
Therefore an n-fold ring consists of 2n alternating Si–O bonds. The ring distribution as a
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function of ring size is plotted in figure 2 for three values of λ: 0.2, 0.5 and 1. For λ = 0.2 the
ring distribution is typical of an open structure with a majority of small rings (the estimated
number of large rings should be taken with a pinch of salt since finite-size effects due to the
limited length of the simulation box bias the results). For λ = 0.5 the distribution becomes
peaked for rings with a specific size (5 and 6) which extend over distances greater than the
inter-atomic distances: molecules are formed in the system. Finally for λ = 1.0 we find the
usual distribution of rings, peaked at sixfold rings and almost symmetric around n = 6 [14],
typical of the silica network.
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Figure 2. Ring size distributions for λ = 0.2, 0.5 and 1.

A complementary way of analysing the structure is to compute the static structure factor
S(q) as a function of λ. We used the standard way of calculating S(q) [15] and focused our
attention on a common feature in glasses: the first sharp diffraction peak. This pre-peak is
related to medium-range structures in the glass and its origin has been the subject of vigorous
debate over a number of years. In figure 3 we represent the amplitude of the FSDP as a function
of λ and in the inset we show the shape of S(q) for λ = 0.2, 0.5 and 1 in the vicinity of the
FSDP, together with the experimental curve [16]. With decreasing values of λ the amplitude
of the FSDP decreases and one can say that for λ � 0.4 this feature does not exist any longer
in S(q). Indeed the residual value of the amplitude for small values of λ is not significant and
is an artifact of the Fourier transform as can be seen in the inset. Together with the results
shown in figure 1, this indicates that the FSDP appears when the tetrahedra (already formed)
arrange themselves into a connected network.

All this structural information shows that below a certain amplitude of the Coulomb
interactions the structure of our toy silica glass has lost all the medium- or extended-range
features and is similar to a soft-sphere glass. From this study it appears that the transition
value of λ between a fragile and a network glass is around 0.5. Of course the only proper
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Figure 3. First sharp diffraction peak amplitude as a function of λ. In inset the structure factor
S(q) is shown in the vicinity of the FSDP for λ = 0.2 (long-dashed line), λ = 0.5 (dashed line),
λ = 1.0 (thin solid line) and compared to the experimental S(q) (bold solid line) for SiO2.

way to describe the covalent bonding network of silica atoms would be to use quantum
mechanical calculations and therefore no precise physical meaning should be attached to
this threshold value λ = 0.5. This value is linked to the specific form of the BKS potential
which does not contain three-body terms and in which the Coulomb interactions are sufficient
to build the SiO4 tetrahedra. Nevertheless the good quality of this ‘simple’ potential has
been demonstrated in a recent study which has shown that SiO2 glass samples generated
with the BKS potential are good starting configurations for ab initio quantum mechanical
molecular dynamics calculations [15]. One interesting consequence of our results is that one
should be cautious when screened Coulomb interactions are used to simulate real silica glasses.
Indeed screened interactions are in a sense similar to ‘weak’ interactions like the ones we have
simulated here with the small values of λ and wrongly treat the summation in reciprocal space
which is carried out using the Ewald summation method. We show here that the screening
should not be too strong in order to simulate a realistic silica glass.

In parallel with the study of the structure we have calculated the vibrational spectrum as
a function of λ. During the diagonalization of the dynamical matrix we did not calculate the
eigenvectors (for computer time reasons) but used the eigenvalues (always positive) to compute
the vibrational density. We were of course interested in the boson peak which appears to be
a characteristic of glasses even though it can also exist in some crystals [2]. This peak, seen
in Raman and inelastic neutron scattering spectra, reflects an enhancement in the density of
states compared to the Debye distribution and is located at frequencies around νB 	 1.5 THz
in silica. When varying λ, the energy (and the pressure since we consider a microcanonical
ensemble) of our system varies appreciably and this is reflected in the variation of the largest
frequency of the whole vibrational spectrum, νmax, which increases from νmax ≈ 20 THz for
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λ = 0.1 to νmax ≈ 40 THz for λ = 1.0. As expected, the shape of the spectrum also varies
with λ: for λ small we have basically one band since the oxygen and silicon atoms are almost
identical whereas for large values of λ we observe a clear separation between an acoustic and
an optical band typical of the formation of well defined Si–O bonds. But the boson peak is in
all cases clearly present. However due to the λ-dependence of the whole spectrum, it is not
legitimate to compare the BPs directly and therefore we have first determined the normalized
density of states g(f ) using reduced frequencies f = ν/νmax. The normalization is such that∫ 1

0 g(f ) df = 1. Then we have used a standard way to extract the BP from the vibrational
spectrum which is to plot g(f )/f 2 because in the Debye approximation g(f ) ≈ f 2 at low
frequency. This curve has then been fitted by a ‘generalized Lorentzian’ [17]:

I = I0f
n 1

[f 2 + f 2
0 ]m

(3)

which has been used to extract the position of the BP and the corresponding height in a
straightforward manner. In figure 4 we show the g(f )/f 2 data together with the fitting curves
for three typical values of λ and in the inset we report the position and the intensity of the BP
as a function of λ. As expected, due to the normalization of the g(f ) curves, the variations of
the position and the intensity have opposite trends. Apart from a first decrease of the intensity
between λ = 0.1 and λ = 0.2 that we cannot interpret simply (at very small values of λ,
there are some artifacts due to the form of the potential as indicated above), one observes a
net sharpening of the BP when λ becomes larger than 0.5. This seems to indicate that a strong
BP is linked to the existence of tetrahedral units or to the presence of an FSDP and therefore
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Figure 4. The boson peak represented as a plot of g(f )/f 2 versus f , where g(f ) is the normalized
density of vibrational states and f the ‘reduced frequency’, taken equal to ν/νmax, where νmax is the
maximum frequency of the spectrum. 
, � and◦ correspond to λ = 0.2, 0.6 and 1.0 respectively.
Dot–dashed, dashed and continuous lines are the corresponding fits using formula (3). In the inset
the position (♦) and the intensity (•) of the boson peak are shown as functions of λ.
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supports previous interpretations for the origin of the BP in silica [1]. Moreover the global
variation of the BP characteristics with λ confirms the recent experimental observation that the
BP increases when going from fragile to strong glasses [18]. Of course these results, based on
a comparison between reduced spectra, should be treated with care: in addition to the increase
of the bandwidth when increasing λ there is also a deformation of the whole spectrum which is
difficult to take into account simply. Finally, if some significance can be given to the apparent
decrease of the BP intensity with increasing λ for λ > 0.7, one could conclude that, once the
tetrahedral network is formed, the increase of the medium-range order leads to a decrease of
the BP intensity. Of course, such a statement needs to be validated by further investigations.

4. Conclusions

In conclusion, we have performed classical molecular dynamics simulations in a toy silica
glass model in which we have changed the intensity of the long-range Coulomb forces. With
this procedure it is possible to analyse the structure and the dynamics of a fragile glass (without
Coulomb interaction) and a strong glass (with Coulomb interaction) within the same system.
We have shown that the formation of a tetrahedral network, the existence of a first sharp
diffraction peak in the static structure factor, a characteristic peaked ring size distribution, as
well as a relatively sharp boson peak, are correlated with the strength of the Coulomb forces;
all these features are absent in the fragile glasses and appear once the Coulomb forces exceed
a potential-dependent threshold. Of course our study is limited to a very specific model and
other ways of creating locally ordered units could have been explored. Nevertheless it sheds
light on what is really happening in a system which can be considered as either a fragile or a
strong glass. By tuning one single parameter (which therefore appears to be the predominant
ingredient in the simulation of glasses) one is able to connect structural features like the FSDP
to vibrational specificities like the boson peak and give answers to questions previously raised
by experimental studies.
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